我们已经更新了隐私政策为了更清楚我们如何使用您的个人数据。

我们使用cookie为您提供更好的体验。你可以阅读我们的饼干政策这里。

广告
与单细胞蛋白质组学长期相互交红的危险因素
行业洞察力

与单细胞蛋白质组学长期相互交红的危险因素

与单细胞蛋白质组学长期相互交红的危险因素
行业洞察力

与单细胞蛋白质组学长期相互交红的危险因素

Single-cell proteomics provides insights into the molecular mechanisms of cell function and can be applied to both healthy and diseased cells. IsoPlexis technologies for single-cell proteomics are used globally by researchers to understand the complex roles of immune cells, specifically multi-functional cells. In a recent paper published in Cell, the company’s platform was employed by researchers aiming to unravel the risk factors behind long COVID.


We caught up with Sean Mackay, CEO and co-founder of IsoPlexis, to find out more about the platform and how single-cell functional proteomics is contributing to our understanding of health and disease.


Katie Brighton (KB): How are single-cell proteomics approaches advancing the understanding of complex diseases?


Sean Mackay (SM): With the advancement of precision medicine, treatments are becoming more tailored to each specific patient’s individual needs. These personalized medicines rely on more advanced technologies that provide a higher resolution and deeper access to in vivo biology to create durable, curative impacts on health.


With genomic and surface marker analysis alone, researchers are missing critical functional information at a protein level. Traditional bulk methods average across all cells, losing critical cellular attributes key to understanding response in patients.


Single-cell functional proteomics reveals the functional cellular attributes that are important for driving immune responses, allowing researchers to gain deeper insights into the cells that are orchestrating responses in our bodies. Essentially, a better understanding of immune cell function can benefit the understanding and treatment of a wide variety of disorders.


Anna MacDonald (AM): What separates IsoPlexis’ approach from other single-cell technologies?


SM: Our platform, including the IsoLight and the IsoSpark, identifies “superhero cells” that would normally be missed by flow cytometry and single-cell genomics. We are probing the immune system to reveal unique immune biomarkers in small subsets of highly polyfunctional cells, which we call “superhero cells”. These superhero cells are essentially highly functional immune cells that orchestrate how an individual responds to treatment. Polyfunctionality has been found to correlate highly with key immune insights, such as potency, persistence and long-term response in patients as published in various studies.


Now, for the first time with IsoPlexis technology, we can identify and predict how these superhero cells orchestrate the immune response much earlier in the clinical process, by way of functional proteins (e.g., cytokines, chemokines, growth factors, etc.). In this manner, we can “tune” immunotherapies and targeted therapies at the cellular behavior level so that they are more precise and personalized.

 

AM: Can you tell us more about the Functional Cell Library and how it was created? What are “superhero” and “supervillain” cells, and how are they identified?


SM: The Functional Cell Library is an industry-first mapping of highly functional, proteomically driven cells, uniquely identified by IsoPlexis’ platform, that determine how the human body responds to complex diseases and therapies.


These cells can be either “superhero cells” (highly polyfunctional cells predictive of potency, patient response, survival, etc.), or “supervillain cells” (highly polyfunctional cells predictive of inflammation, toxicity, disease progression, etc.)


By identifying a comprehensive range of rare and important polyfunctional cells, the library categorizes how these cells have been used to predict cell product functional attributes and vaccine efficacy, predict and monitor patient response to therapies in a wide range of high impact journals.


In complementing the genomic data used in mapping the Human Cell Atlas, the Functional Cell Library adds a unique layer of proteomic data on the wide range of superpowered immune and tumor cell types uniquely identified by IsoPlexis' single-cell functional proteomics. The Functional Cell Library provides the bridge to leverage unique functional phenotyping data to patient responses in vivo for preclinical, translational and clinical applications.


It is a valuable resource across oncology, immunology, neurology, autoimmune disorders and infectious disease as well as cell and gene therapies, targeted therapies and more. It is available now as an industry-wide, literature-referenced, and consistently updated resource to leverage unique functional phenotyping data across a variety of cell types for product manufacturing and quality control as well as preclinical, translational and clinical applications.

KB: Can you give us an overview of the study published in Cell? What were the key findings?


SM: In the paper, titled "Multiple Early Factors Anticipate Post-Acute COVID-19 Sequelae", researchers correlated patient symptoms with in-depth profiling of blood-based biomarkers throughout COVID-19 infection to identify factors associated with the development of post-acute sequelae of COVID-19 (PASC). PASC is the technical term for long COVID, i.e., a range of new, returning or ongoing health problems people can experience four or more weeks following infection.


Authors followed 309 patients from initial clinical diagnosis to early-stage recovery from acute disease, spanning up to 2–3 months post-diagnosis to identify the early factors that contribute to long COVID, such as increased frequency of supervillain immune cell subsets.


KB: Can you tell us about how the IsoPlexis single-cell functional proteomics platform helped to identify the presence of different immune cell types and inflammation in long COVID?


SM: IsoPlexis’ single-cell proteomics provided a unique assessment to dissect the functional impacts of different cell types across multiple timepoints and the interplay between innate and adaptive immune responses that contributed to effector functions or inflammation in long COVID.


IsoPlexis proteomics revealed a correlation between the increased frequency of “supervillain” T cell subsets with type 1, type 2 and intermediate polarized endotypes of PASC and disease severity at convalescence. The single-cell functional data also demonstrates the “supervillain” monocytes in convalescent patients compared to healthy subjects that correlated with all four identifiable endotypes of PASC, indicating the impact of monocytes on a sustained inflammation at convalescence. 

 

KB: Now the study has identified four endotypes of post-acute sequelae of COVID-19, how could this information be used to shape treatment strategies?


SM: Through understanding the supervillain cells driving inflammation in diseases like COVID-19, we can apply these learnings to a wider array of critical challenges for inflammatory diseases, such as insights into disease progression, or the identification of potential targets for treatment. Our platform has previously been used for advancing vaccine development as well as understanding the mechanisms of transplant rejection, cytokine release syndrome and toxicity, and autoimmune inflammation.


KB: Aside from COVID-19, what other disease and application areas can single-cell functional proteomics benefit?


SM: Our single-cell functional proteomics is critical for applications in immune monitoring and immune health. The functional single-cell analysis from our platform has been published in several studies where our readout was uniquely predictive of patient attributes in research areas like cancer immunology, cell therapy, autoimmune inflammation and others.


Two recent Nature Medicine papers demonstrate the unique utility of IsoPlexis' single-cell proteomic platform for predicting the potency of novel cell therapies, including chimeric antigen receptor (CAR) T-cells in blood cancer and tumor-infiltrating lymphocytes (TILs) against solid tumors. One of the greatest challenges in improving cell therapies is understanding exactly how these living immune drugs work, as early as possible. Through these two high-impact publications, the researchers leveraged our unique single-cell proteomic analysis to gain a better understanding of how CAR-Ts and TILs function, which then leads to improved assessments of quality, potency and durability.


Additionally, our platform identified a blood-based biomarker that correlated with patient response and progression-free survival in a Phase 2 clinical trial for combination checkpoint and novel IL-2 agonist therapy, published in The Journal of Clinical Oncology.

 

KB: Anything else you’d like to mention?


SM: We have recently introduced Duomic, which uniquely provides researchers with the ability to identify gene expression profiles of these highly functional superhero and supervillain cells. For the first time, researchers can capture both functional proteomics and gene expression from the same single cell. This empowers researchers to drill down into the genetic drivers of those “super” cells, with applications in:

  • Revealing the genetic drivers of CAR T cells to create more potent and durable next-generation therapeutics
  • Profiling the TCR repertoire, accelerating the understanding of the immune system and ability to develop new therapeutics
  • Recoding gene and gene pathways driving therapeutic resistance and tumor progression

 

Sean Mackay was speaking to Katie Brighton, Scientific Copywriter and Anna McDonald, Science Writer for Technology Networks.

  

">

想要这个行业洞察力的免费PDF版本吗?

填写下面的表格,我们将向您发送PDF版本的电子邮件“确定长期与单细胞蛋白质组学的危险因素”

名*
姓*
电子邮件地址*
国家*
公司类型*
工作职能*
您想从技术网络接收进一步的电子邮件通信吗?捷克葡萄牙直播

捷克葡萄牙直播技术网络有限公司需要您提供给我们的联系信息,以与您联系我们的产品和服务。您可以随时退订这些通信。有关如何取消订阅以及我们的隐私惯例和保护隐私的承诺的信息,请查看我们隐私政策

单细胞蛋白质组学提供了对细胞功能的分子机制的见解,可以应用于健康和患病细胞。等路研究人员在全球使用了单细胞蛋白质组学的技术来了解免疫细胞的复杂作用,特别是多功能细胞。在最近发表的论文中细胞,,,,该公司的平台受到研究人员的利用,目的是揭示长期库维德背后的危险因素。


我们赶上了肖恩·麦凯,Isoplexis的首席执行官兼联合创始人,以了解有关该平台的更多信息,以及单细胞功能蛋白质组学如何有助于我们对健康和疾病的理解。


凯蒂·布莱顿(KATIE BRIGHTON)(KB):单细胞蛋白质组学如何发展对复杂疾病的理解?


Sean Mackay(SM):随着精度医学的发展,治疗越来越适合每个特定患者的个人需求。这些个性化药物依赖于更先进的技术,这些技术可提供更高的分辨率和更深入的访问体内生物学对健康产生持久,治愈的影响。


仅使用基因组和表面标记分析,研究人员就缺少蛋白质水平的关键功能信息。所有细胞中的传统大量方法平均消失,失去关键细胞属性是理解患者反应的关键。


单细胞功能蛋白质组学揭示了对驱动免疫反应很重要的功能性细胞属性,从而使研究人员能够深入了解正在策划我们体内反应的细胞。从本质上讲,对免疫细胞功能的更好理解可以使人们对各种疾病的理解和治疗有益。


安娜·麦克唐纳(Anna MacDonald)(AM):是什么将Isoplexis的方法与其他单细胞技术区分开来?


SM:我们的平台,包括隔离和ISOSPARK,标识了通常被流式细胞术和单细胞基因组学遗漏的“超级英雄细胞”。我们正在探测免疫系统,以揭示高度多功能细胞的小亚集中的独特免疫生物标志物,我们称之为“超级英雄细胞”。这些超级英雄细胞本质上是高度功能性的免疫细胞,它们编排了个体对治疗的反应。已经发现多功能性与关键免疫见解高度相关,例如在各种研究中发表的患者中的效力,持久性和长期反应。


现在,我们第一次使用等线技术,我们可以通过功能蛋白(例如细胞因子,趋化因子,生长因子等)在临床过程中在临床过程中更早地在临床过程中更早地策划免疫反应。通过这种方式,我们可以在细胞行为水平上“调整”免疫疗法和靶向疗法,从而更加精确和个性化。

AM:您能告诉我们更多有关功能单元库以及如何创建?什么是“超级英雄”和“ Supperillain”细胞,如何确定?


SM:功能性细胞库是由Isoplexis平台独特地识别的高功能性,蛋白质组学驱动的细胞的行业第一映射,它决定了人体对复杂疾病和疗法的反应。


这些细胞可以是“超级英雄细胞”(高度多功能细胞,可预测效力,患者反应,生存等),也可以是“超级挑选细胞”(高度多功能细胞,可预测炎症,毒性,疾病进展等)。


通过鉴定一系列罕见和重要的多功能细胞,该库将这些细胞用于预测细胞产物功能属性和疫苗功效,预测和监测广泛高影响期刊中患者对疗法的反应和监测。


在补充用于映射人类细胞地图集的基因组数据时,功能性细胞库添加了独特的蛋白质组学数据层,这些数据层是通过Isoplexis的单细胞功能蛋白质组学独特地识别的各种超能免疫和肿瘤细胞类型。功能单元库提供了利用独特的功能表型数据到患者反应的桥梁体内用于临床前,翻译和临床应用。


它是遍及肿瘤学,免疫学,神经病学,自身免疫性疾病和传染病以及细胞和基因疗法,靶向疗法等的宝贵资源。它现在可以作为整个行业,文献引用的,并始终如一地更新资源,以利用各种细胞类型的独特功能表型数据用于产品制造和质量控制以及临床前,转化和临床应用。

KB:您能给我们一个发表的研究概述吗细胞?什么是主要发现?


SM:在纸上,标题为“多个早期因素预期急性后共卷199后遗症“研究人员将患者症状与整个Covid-19感染的血液生物标志物的深入分析相关联,以识别与Covid-19的急性后遗症的发展相关的因素(PASC)。PASC是长期COVID的技术术语,即,人们在感染后可以遇到四个或更长时间的一系列新的,返回或正在进行的健康问题。


作者跟踪了309名患者,从初始临床诊断到急性疾病的早期恢复,诊断后至2-3个月,以识别有助于长期相互兴趣的早期因素,例如超级丙烷免疫细胞亚群的频率增加。


KB:您能告诉我们有关异源性单细胞功能蛋白质组学平台如何帮助确定长期互联的不同免疫细胞类型和炎症的存在吗?


SM:Isoplexis的单细胞蛋白质组学提供了独特的评估,以剖析多个时间点上不同细胞类型的功能影响以及先天和适应性免疫反应之间的相互作用,从而有助于效应子功能或长期炎症。


异源蛋白质组学揭示了“超级挑选” T细胞亚群的频率与1型,2型和中间极化内型的频率增加之间的相关性和康复时疾病的严重程度之间的相关性。与健康受试者相比,单细胞功能数据还证明了康复患者中的“超挑肽”单核细胞,这些受试者与PASC的所有四种可识别的内型相关,表明单核细胞对康复时持续炎症的影响。

KB:现在,该研究已经确定了Covid-19的四种急性后次后遗症的内型,该信息如何用于塑造治疗策略?


SM:通过了解Covid-19等疾病中驱动炎症的超级反阵细胞,我们可以将这些学习应用于炎症性疾病的更广泛的关键挑战,例如对疾病进展的见解或鉴定潜在的治疗靶标。我们的平台以前已用于推进疫苗开发,并了解移植排斥,细胞因子释放综合征和毒性以及自身免疫性炎症的机制。


KB:除了Covid-19,其他哪些其他疾病和应用领域可以单细胞功能蛋白质组学受益?


SM:我们的单细胞功能蛋白质组学对于免疫监测和免疫健康的应用至关重要。来自我们平台的功能性单细胞分析已在几项研究中发表,我们的读数可以独特地预测癌症免疫学,细胞疗法,自身免疫性炎症等研究领域的患者属性。


最近两个自然医学论文展示了等线虫单细胞蛋白质组学平台的独特效用,以预测新型细胞疗法的效力,包括嵌合抗原受体(汽车)血液癌和肿瘤浸润淋巴细胞(TILS)针对实体瘤。改善细胞疗法的最大挑战之一是准确了解这些生命免疫药物如何尽早起作用。通过这两个高影响的出版物,研究人员利用我们独特的单细胞蛋白质组学分析来更好地了解CAR-TS和TILS的功能,从而可以改善对质量,效力和耐用性的评估。


此外,我们的平台确定了一种基于血液的生物标志物,该生物标志物与患者反应和无进展的生存率相关,在第二阶段临床试验中,用于组合检查点和新型IL-2激动剂疗法,发表在临床肿瘤学杂志

KB:您想提及的还有什么吗?


SM:我们最近引入了Duomic,该Duomic唯一地为研究人员提供了鉴定这些高功能性超级英雄和超级英雄细胞的基因表达谱的能力。研究人员首次可以从同一单个细胞中捕获功能蛋白质组学和基因表达。这使研究人员能够深入研究这些“超级”细胞的遗传驱动因素,并应用于:

  • 揭示汽车T细胞的遗传驱动因素,以创建更有效,更耐用的下一代治疗疗法
  • 分析TCR曲目,加速对免疫系统的理解和开发新疗法的能力
  • 重新编码基因和基因途径驱动治疗性和肿瘤进展

肖恩·麦凯(Sean Mackay)正在与科学撰稿人凯蒂·布莱顿(Katie Brighton)和技术网络科学作家安娜·麦克唐纳(Anna McDonald)交谈。捷克葡萄牙直播

广告