我们已经更新了隐私政策to make it clearer how we use your personal data.

我们使用cookie为您提供更好的体验。你可以阅读我们的Cookie Policy这里。

Advertisement
It’s in the Water: Antimicrobial Contamination and the Environment
文章

It’s in the Water: Antimicrobial Contamination and the Environment

It’s in the Water: Antimicrobial Contamination and the Environment
文章

It’s in the Water: Antimicrobial Contamination and the Environment

Credit: Pixabay
Read time:

Want a FREE PDF version of This Article?

填写下面的表格,我们将向您发送PDF版本的电子邮件"It’s in the Water: Antimicrobial Contamination and the Environment"

First Name*
Last Name*
电子邮件地址*
Country*
Company Type*
Job Function*
您想从技术网络接收进一步的电子邮件通信吗?捷克葡萄牙直播

捷克葡萄牙直播技术网络Ltd. needs the contact information you provide to us to contact you about our products and services. You may unsubscribe from these communications at any time. For information on how to unsubscribe, as well as our privacy practices and commitment to protecting your privacy, check out our隐私政策

全球对抗菌剂的依赖


It is hard to imagine a world without antimicrobials. From healthcare to agriculture; antimicrobials underpin the microbiological safety of our modern world. In agriculture, antibiotics are used to control microbial pathogens and promote growth in livestock animals. In 2017, the FDA reported that over1000万公斤of antimicrobial drugs were sold for use in food-producing animals, 51 % of which are medically important. In human medicine, antimicrobials are dispensed within hospitals and in the community to prevent or treat infectious disease. In 2014, the Centers for Disease Control (CDC) reported266.1 millionoral antibiotic prescriptions, and the most recent figures from the EU report a median consumption rate of17.9定义的每日剂量每1000名居民的抗生素。不幸的是,抗菌剂的生命周期并非以其施用的人类或动物结束。


抗菌化合物的生命周期


Depending on the exact antimicrobial and its route of application, between10%至90%可以以其活性形式排出。以口服阿莫西林处方的人类患者的例子治疗链球菌性喉咙,在给药后,超过50%可以排出抗生素,进入污水处理系统。从这里开始,它将被运输到废水处理厂(WWTPS),并进行机械,生物和化学处理。尽管进行了这些治疗,但大量的阿莫西林和其他抗菌药物persist并将其与处理水一起引入河流和湖泊。随后,它们作为一种看不见的污染物在自然环境中传播,干扰了自然系统,远远超出了其原始管理。


抗菌污染的毁灭性影响


环境中的抗菌污染与高水平的生态毒性和抗菌耐药的迅速传播有关。最近的研究揭示了释放在环境中的抗菌素对主要生产者的毒性作用,例如蓝细菌和藻类。令人担忧的是,与其他生物活性化学污染物一样,抗菌药物将使整个生态系统从自下而上稳定。除了抗菌剂在环境中的直接生态影响之外,抗生素抗生素微生物的出现是人类医疗保健的主要关注点。多药抗性微生物病原体的患病率正在上升,许多治疗更具挑战性。例如,世卫组织报告了广泛的耐药性结核病(XDR-TB)的治疗成功率34 %在2015年,与82%for non-resistant TB.


As natural producers of antibiotics, bacteria have innate机制与这类化学品相互作用。此外,与动物相比,细菌的发展速度非常快。这些因素大大增加了细菌的可能性spontaneously developing resistance响应外部选择压力,例如抗菌剂的存在。随着越来越多的抗菌素被释放到环境中,抗生素耐药的虫子的选择压力越来越强,可以蓬勃发展,并最终找到回到人类的道路。WWTPS是一个特别令人担忧的环境,它可以充当抗生素耐药性致病细菌的孵化器[1],,,,[2]。一项针对四个美国WWTP的研究,检测到甲氧西林耐药性金黄色葡萄球菌(MRSA) in50%of wastewater samples, including wastewater effluent.


Removing antimicrobial contaminants from the environment


问题是WWTP从未设计用于去除复杂的化学物质。诺丁汉大学化学和环境工程讲师Rachel Gomes博士解释说:“ WWTPS是在1850年代创建的,旨在消除致病性微生物。WWTP从未设计用于去除这些新兴污染物”。WWTP是破坏环境中抗菌污染周期并消除抗菌抗性细菌的选择压力的关键目标。但是,抗菌剂存在重大挑战对于现有的废水纯化方法,可以通过对生物降解,化学氧化和吸附的作用机理进行分类。


当前大多数WWTP生物降解as the primary method to degrade or remove organic molecules from wastewater. Biodegradation processes rely on micro-organisms and solid biomass in the wastewater sludge to degrade and adsorb organic molecules, before separation by sedimentation or membrane filtration. However, these methods have generally demonstrated alower efficacy用于复杂的药物分子,例如抗菌素。阿德里亚诺·乔斯(Adriano Joss)博士是瑞士联邦水上科学技术研究所(EAWAG)的工艺工程师,他指出,“通常在微污染物去除剂的背景下讨论了50种化合物。生物学方法仅除去了这些化合物的20%。


Chemical oxidation has been proposed as a pre-treatment to deactivate complex organic molecules before they are fully decomposed in the biodegradation steps. This can be achieved by addition of oxidizing chemicals, including hydrogen peroxide, ozone, inorganic catalysts, or through electrochemical methods. Electrochemical oxidation methods include the use of a硼隆式钻石阳极,它实现了包含29种靶药物和农药的废水有机物的完全矿化。Gomes博士指出:“先进的氧化方法降低了这些化学物质的水平,但它们的能源成本极高,产生空气排放和潜在危险的侧产品”,实际上,硼龙掺杂的钻石阳极研究人员对环境提出了对环境的关注氯酸盐和高氯酸盐物种及其释放到环境的潜在影响。


Finally, there is adsorption of the organic micropollutants on a solid particle, which can be removed from the effluent by filtration. Adsorption can be achieved through hydrophobic van der Waals interactions or ionic interactions, and common particle materials include granular activated carbon, activated alumina, zeolites, peat and metal-organic frameworks. According to Dr Joss, activated carbon represents the most scalable option, “activated carbon is very cheap, easy to get and the activation process requires only an oven with controlled temperature.” Dr Gomes agrees “we use activated carbon; it can be manufactured at scale. The challenge with adsorbents is will it take the pollutant of interest, and are you able to manufacture enough of it?” Nevertheless, activated carbon is often portrayed as a昂贵由于其再生过程,文献中的繁重选择,这需要高温处理和大气控制。


在实验室阶段正在探索几种新的吸附物种,以消除有机微污染物并有效再生。这样一种物种是环糊精,一种天然存在的糖,通常与febreze®等空气污染物去除产品相关。近年来,环糊精聚合物发现了一个新的application在水净化中。不溶性环糊精聚合物被认为是一种廉价,可持续生产的活性炭替代品。西北大学的最新研究报告了高表面积,交联的β-环糊精聚合物的产生,该聚合物以有机微污染物的速度隔离15 - 200次大于活性碳。此外,再生过程只需要轻度洗涤程序而不会丧失性能。


外表


关于减少环境中抗菌污染的必要性,有普遍的共识。首先,这是从长期的环境计划的角度来动机,以保护自然生态系统免受有机微污染物的侵害。联合国最新的报告简直提醒人们人类在脆弱的植物上的巨大占地面积,并指出,现在濒临灭绝的100万个动物和植物物种。其次,人们对抗菌耐药性和人类健康存在迅速积累的担忧。


借助新的和改进的方法来降解和清除具有挑战性的有机微污染物的研究景观,似乎我们离解决方案并不遥远。但是,工程师的观点引起了可扩展性和实用性的共鸣。对于任何新的去污技术,这些因素必须处于最前沿。“它可以扩展和可行吗?”每一点都和“它会降解/吸附我们的目标化学化学物质?”一样重要。Gomes博士雄辩地总结了“您必须从整体上看这些治疗技术,这是将研究转化为实用性”。

Advertisement