我们已经更新了隐私政策为了更清楚我们如何使用您的个人数据。

我们使用cookie为您提供更好的体验。你可以阅读我们的饼干政策这里。

广告
基因编辑的干细胞衍生疗法 -  T1D的功能治疗?
行业洞察力

基因编辑的干细胞衍生疗法 - T1D的功能治疗?

基因编辑的干细胞衍生疗法 -  T1D的功能治疗?
行业洞察力

基因编辑的干细胞衍生疗法 - T1D的功能治疗?

The incidence of diabetes is increasing globally at a concerning rate: an estimated 415 million people are living with the condition, and by 2040, cases are expected to increase to 642 million people. No cure exists, and current therapies are centered on lifetime management of the condition, through monitoring diet and the use of diabetes medications and insulin injections.  

 

ViaCyte, a clinical-stage regenerative medicine company, is striving to change this and develop a functional cure for type 1 diabetes (T1D). The company is partnering with CRISPR Therapeutics to create an allogeneic, gene-edited, immune-evasive and stem cell-derived therapy for the treatment of T1D. Technology Networks had the pleasure of speaking with Michael Yang, president and chief executive officer of ViaCyte, to learn more about the therapy and the technology behind it.

 

AM: ViaCyte’s stem cell-derived technologies, including VCTX210, are based on pancreatic-lineage cells. Can you tell us more about the cells and their intended effects?

 

MY: Pancreatic islet cells are responsible for insulin production, and they are destroyed by the body’s immune system in people with T1D. To overcome this challenge, we have developed our lead product candidate, PEC-Direct, which is comprised of stem-cell derived, pancreatic cells in a credit-card-size pouch with perforations in the membrane enabling vascularization. These cells are designed to differentiate into mature islet cells after implantation and produce both insulin and glucagon to regulate blood glucose.


PEC-Direct is undergoing first-in-human clinical trials in patients at high risk for severe complications of T1D, including hypoglycemia unawareness. These studies show early promising results, suggesting that these cells can offer a potential scalable, renewable source of pancreatic islet cells. The findings also provide the first reported evidence that differentiated stem cells implanted in patients can generate glucose-responsive insulin secretion and clinically meaningful improvements in glycemic control in a patient with T1D concurrent with decreased exogenous insulin requirements. It gives us enormous hope for the future potential of a functional cure for T1D.


We have demonstrated proof-of-concept that our pancreatic cells can produce insulin and control blood glucose. However, the PEC-Direct program requires concurrent immunosuppression. To address that challenge, we are working in collaboration with CRISPR Therapeutics on gene-edited cells designed to not only enable production of insulin and glycemic control but also evade the immune system and eliminate the need for immunosuppressants.


AM: What is the status of the program?

 

MY: We are excited that regulatory guidance from Health Canada is enabling us to move forward with a first-in-clinic Phase I safety trial of VCTX210. We’re breaking new ground with a next-generation approach that may eliminate the need for immunosuppression and, as a result, potentially broaden the number and types of diabetes patients who can be treated. We look forward to commencing the trial and providing updates on our progress.

 

AM: How will the cells be implanted into the patient?

 

MY: The cells will be contained in the same type of device that is used for PEC-Direct. They are implanted under the skin during an outpatient procedure and configured to enable direct vascularization of the engrafted cells.


AM: Why is immunosuppression required with some allogeneic implanted cell therapies?

 

MY: Implanted cells are allogeneic and, thus, can be recognized as foreign by the body’s immune system. Moreover, T1D is an autoimmune disease, in which a person’s own immune system attacks the pancreas’ functioning beta cells. When implanted allogeneic cells come into contact with cells of the immune system, immunosuppressants must be used to prevent immune rejection.  Alternatively, immunosuppression could be avoided if approaches are used to enable cells to evade the immune system.

 

AM: Do the gene-edited cells eliminate the need for patients to take immunosuppressive drugs? Can you explain how this may be achieved?

 

MY: The product is specifically engineered to avoid destruction by the patient’s immune system and potentially eliminate the need for immunosuppressants. At the European Association for the Study of Diabetes (EASD) meeting in 2019, CRISPR Therapeutics shared information on two of the gene edits, specifically the elimination of the β2-microglobulin (B2M) gene and expression of the pro-tolerance programmed death-ligand 1 (PD-L1) to inhibit T cell activation by the immune system. After gene-editing of the parent cell line, the cells will be differentiated into pancreatic endoderm cells, which will likely be housed in the same type of device used for ViaCyte’s PEC-Direct. This device would enable direct interaction between blood vessels and the implanted cells, but because the cells are designed to be immune-evasive, we would expect them not to be rejected by the immune system. Pre-clinical studies of the gene-edited cells show protection against activated T cells. With the initiation of a clinical trial of the VCTX210 candidate, we will gain additional data from patients on the immune evasiveness of the cells.

 

AM: How do gene-edited cells fit in with ViaCyte’s full portfolio of investigative, stem cell-derived therapies for T1D?

MY: We continue to advance a variety of product candidates to target a functional cure for all patients with T1D as well as those with insulin-requiring T2D. We’re manufacturing these products under quality-controlled conditions to provide a virtually unlimited supply of cells that can be optimally and safely administered to patients. By combining these products with new gene-editing approaches and device designs, we aim to eliminate the need for immunosuppressants, which would open up diabetes treatments to a much broader patient population. We’re pursuing encapsulation device approaches in collaboration with W.L. Gore & Associates to enclose our pancreatic cells and provide therapeutic potential without immunosuppression. Additionally, if our next-gen gene-editing immune-evasive technology successfully eliminates the need for immunosuppressants, it would free people from the associated risks of immunosuppression. We’re excited to introduce a first-in-class CRISPR-edited diabetes therapy to the clinic—a major step forward in transforming stem cell-derived treatments for diabetes.


AM: Where do you see the future of gene-edited stem-cell derived therapies heading?

 

MY: Gene-edited stem cell-derived therapies could very well be a game changer for the field. If we can successfully combine providing an unlimited source of insulin-secreting islet cells with eliminating the need for immune suppression, we could be well on our way toward developing a functional cure for T1D and insulin-requiring T2D. If that comes to pass, millions of people with diabetes across the world would be free from the daily burdens of managing their disease as well as from its many debilitating and life-threatening complications. It’s a goal we at ViaCyte work toward every day.

 

Michael Yang was speaking to Anna MacDonald, Science Writer for Technology Networks.

  

">

想要这个行业洞察力的免费PDF版本吗?

填写下面的表格,我们将向您发送PDF版本的电子邮件“基因编辑的干细胞衍生疗法 - T1D的功能治疗?”

名*
姓*
电子邮件地址*
国家*
公司类型*
工作职能*
您想从技术网络接收进一步的电子邮件通信吗?捷克葡萄牙直播

捷克葡萄牙直播技术网络有限公司需要您提供给我们的联系信息,以与您联系有关我们的产品和服务。您可以随时退订这些通信。有关如何取消订阅以及我们的隐私惯例和保护隐私的承诺的信息,请查看我们隐私政策

糖尿病的发病率正在以有关速率的全球增加:估计4.15亿人患有这种情况,到2040年,案件预计将增加到6.42亿人。不存在治疗,目前的疗法以监测饮食和使用糖尿病药物和胰岛素注射的方式来关注疾病的终生管理。

Viocyte是一家临床阶段再生医学公司,正在努力改变这种情况并开发1型糖尿病(T1D)的功能治疗。该公司正在与CRISPR疗法创建一种同种异体,基因编辑,免疫异常和干细胞衍生的疗法,用于治疗T1D。捷克葡萄牙直播很高兴与Viocyte总裁兼首席执行官Michael Yang交谈,以了解有关该疗法及其背后技术的更多信息。

AM:包括VCTX210在内的Viacyte的干细胞衍生技术基于胰腺细胞。您能告诉我们更多有关细胞及其预期效果的信息吗?

我的:胰岛细胞负责胰岛素的产生,并且在T1D患者中人体的免疫系统破坏了胰岛素。为了克服这一挑战,我们开发了主要产品候选者PEC-Direct,该导向由信用卡大小的袋中的干细胞衍生的胰腺细胞组成,并在膜上带有膜的穿孔,从而实现血管化。这些细胞被设计为植入后分化为成熟的小岛细胞,并产生胰岛素和胰高血糖素以调节血糖。


PEC-Direct正在接受Human临床试验的首次临床试验,患有T1D严重并发症的高风险,包括低血糖不认识。这些研究表明了早期有希望的结果,表明这些细胞可以提供胰岛细胞的潜在可延展性,可再生的来源。这些发现还提供了第一个报道的证据,表明植入患者的分化干细胞可以产生葡萄糖反应性胰岛素的分泌,并在T1D患者的血糖控制中对血糖控制的临床有意义改善,并同时伴随外源性胰岛素需求降低。它给我们带来了对T1D功能治疗的未来潜力的巨大希望。


我们已经证明了我们的胰腺细胞可以产生胰岛素并控制血糖。但是,PEC-Direct程序需要并发免疫抑制。为了应对这一挑战,我们正在与CRISPR疗法合作进行基因编辑的细胞,旨在不仅能够产生胰岛素和血糖控制,而且还避免了免疫系统并消除了对免疫抑制剂的需求。


AM:该程序的状态是什么?

我的:我们很兴奋,加拿大卫生部的监管指导使我们能够进行VCTX210的第一阶段I阶段安全试验。我们正在采用下一代方法打破新的基础,该方法可能消除了对免疫抑制的需求,因此,我们可能会扩大可以接受治疗的糖尿病患者的数量和类型。我们期待开始审判并提供有关我们进度的最新信息。

AM:细胞将如何植入患者?

我的:该单元将包含在用于PEC-Direct的相同类型的设备中。在门诊手术期间,它们被植入皮肤下,并配置为能够直接的血管化细胞。


AM:为什么一些同种异体植入细胞疗法需要免疫抑制?

我的:植入的细胞具有同种异体性,因此可以被人体的免疫系统识别为异物。此外,T1D是一种自身免疫性疾病,其中一个人自己的免疫系统会攻击胰腺功能性的β细胞。当植入的同种异体细胞与免疫系统的细胞接触时,必须使用免疫抑制剂来防止免疫排斥。或者,如果使用方法使细胞能够逃避免疫系统,则可以避免免疫抑制。

AM:基因编辑的细胞是否消除了患者服用免疫抑制药物的需求?您能解释一下如何实现吗?

我的:产品专门设计以避免患者的免疫系统破坏,并有可能消除对免疫抑制剂的需求。在2019年的欧洲糖尿病研究协会(EASD)会议上,CRISPR Therapeutics共享了有关两个基因编辑的信息,特别是消除了β2-微球蛋白(B2M)基因和支持耐耐受性死亡法的表达1(PD-L1)抑制免疫系统的T细胞激活。在基因编辑母细胞系后,将将细胞分化为胰腺内胚层细胞,这些细胞可能会饲养在用于Viocyte PEC-Direct的相同类型的设备中。该装置将使血管与植入细胞之间的直接相互作用,但是由于细胞被设计为免疫渗透,我们希望它们不会被免疫系统拒绝。基因编辑细胞的临床前研究显示对激活的T细胞的保护。随着VCTX210候选者的临床试验的开始,我们将从患者那里获得有关细胞免疫反应性的更多数据。

AM:基因编辑的细胞如何适合Viocyte的全部调查,干细胞衍生的T1D疗法?

我的:我们继续推进各种候选产品,以针对所有T1D患者以及胰岛素重新征用T2D的患者的功能治疗。我们正在在质量控制的条件下生产这些产品,以提供几乎无限的细胞供应,可以在患者身上进行最佳和安全地施用。通过将这些产品与新的基因编辑方法和设备设计相结合,我们旨在消除对免疫抑制剂的需求,这将为更广泛的患者人群打开糖尿病治疗。我们正在与W.L.合作采用封装设备方法。Gore&Associates包围我们的胰腺细胞并提供治疗潜力而无需免疫抑制。此外,如果我们的下一代基因编辑的免疫渗透技术成功地消除了对免疫抑制剂的需求,那么它将使人们摆脱相关的免疫抑制风险。我们很高兴向诊所引入一流的CRIS PRPR糖尿病疗法,这是转变干细胞衍生糖尿病治疗的重要一步。


AM:您在哪里看到基因编辑的干细胞衍生疗法的未来?

我的:基因编辑的干细胞衍生疗法很可能是该领域的游戏规则改变者。如果我们能够成功地结合提供无限的分泌胰岛细胞细胞的来源,以消除免疫抑制的需求,那么我们很可能正在为开发用于T1D和胰岛素的T2D的功能治疗。如果发生这种情况,世界范围内数以百万计的糖尿病患者将摆脱管理疾病的日常负担,以及其许多令人衰弱和危及生命的并发症。这是我们每天在Viocyte工作的目标。

迈克尔·杨(Michael Yang)正在与技术网络科学作家安娜·麦克唐纳(Anna MacDonald)交谈。捷克葡萄牙直播

认识作者
安娜·麦克唐纳(Anna MacDonald)
安娜·麦克唐纳(Anna MacDonald)
科学作家
广告