我们已经更新了隐私政策为了更清楚我们如何使用您的个人数据。

我们使用cookie为您提供更好的体验。你可以阅读我们的饼干政策这里。

广告
满足重新对基因治疗安全标准的重新关注
行业洞察力

满足重新对基因治疗安全标准的重新关注

满足重新对基因治疗安全标准的重新关注
行业洞察力

满足重新对基因治疗安全标准的重新关注

It is not new news that gene therapies represent a rapidly growing new paradigm, both therapeutically and with respect to how they are managed within the larger scope of healthcare. This has wide-ranging impacts on several key areas, including regulation. In terms of the gene therapy regulatory framework, although 2020 brought a mixed bag — six guidance were finalized, and a new draft guidance introduced — some high-profile rejections have rattled the industry. For example, BioMarin’s delay by the Food and Drug Administration (FDA) on the grounds of not having robust enough clinical trial data, and patient deaths in the Audentes’ ASPIRO clinical trial.

These rejections, coupled with Bristol Myers Squibb and bluebird bio being flat-out refused for their latest submissions, suggests that the regulatory burden on the gene therapy industry is going to grow exponentially, and safety is going to come under even greater regulatory scrutiny.

The balancing act between safety, efficacy and manufacturing


Although safety and efficacy are always at the forefront of drug development, the establishment of efficient and scalable manufacturing processes is also important. While such logistical considerations may initially be considered secondary to drug safety and efficacy, these factors are interlinked. Take, for example, the issues that emerged in the ASPIRO trial. This
Phase I/II trial aimed to evaluate the safety and efficacy of the adeno-associated virus (AAV) delivered gene therapy, AT132, in patients with X-linked myotubular myopathy (XLMTM). XLMTM, a rare neuromuscular disease that affects newborn boys, is often fatal – with 50% mortality within the first 18 months of life. Mutation of the myotubularin-1 (MTM1) gene causes progressive muscle weakness, decreased muscle tone and respiratory failure. Disease-modifying treatment is unavailable and current care constitutes symptom-managment.1

AT132 was engineered to deliver a functional copy of the MTM1 gene into skeletal muscle cells to treat XLMTM. Despite positive results in the low-dose cohort, the trial was halted due to participant deaths from liver dysfunction and sepsis in the high-dose arm.2-3 Evidence is mounting regarding the potential risks of high-dose AAVs, with toxicities also observed with high doses of AveXis’s Zolgensma, Solid Biosciences’ SGT-001 and Pfizer’s PF-06939926.4,5

Are directed evolution or novel production cell systems the answer?


How can this Achilles’ heel in an otherwise powerful modality be addressed? One route is re-designing AAVs so that high doses are no longer required to ensure enough drug reaches the target tissue to work. Directed evolution can alter AAV serotypes to allow them to target specific human tissues more closely, eliminating the need for high doses. But manufacturing yields can drop precipitously, with titers reported to be 100 times lower than with standard AAVs.

Gene therapies are now being developed for more common disorders, including
COVID-19. Considering such applications of these therapeutics, a 100-fold decrease in manufacturing capacity would translate into significant delays in getting drugs to patients who may desperately need them.

Another consideration is the trend towards using novel host cell and vector systems in the production of recombinant AAV (rAAV) gene therapies. While traditional transient transfection methods have produced numerous clinical-stage gene therapy candidates, the scale-up of these processes are particularly challenging. For example, ensuring batch-to-batch consistency has proved difficult with yields of more than 500 liters. Therefore, drug makers are exploring other approaches, such as the insect cell and baculovirus system adopted by BioMarin to produce their hemophilia GT candidate. While it provided great scalability – easily achieving batch volumes over 2000 liters, with higher AAV amounts per batch – concerns have been raised in general. Differences in AAV characteristics likely to be functionally and clinically relevant have been observed between AAVs that are generated by different systems, including
post-translational modifications, such as acetylation, glycosylation, phosphorylation and methylation.6 Further, low-level methylation also occurs at differing sites on the rAAV genomes.

Filters: An elegant solution for gene therapy virus-control strategies


Another linchpin requirement with AAVs is the elimination of contaminants, particularly of viral vectors. An example is baculoviruses that are employed in producing AAVs, and adventitious viruses that can infect the production cells, both of which would harm the patient and constitute major safety breaches. To eliminate unwanted viruses from the classical biologic products, such as monoclonal antibodies and recombinant proteins, manufacturers have applied robust downstream methods that remove or destroy viruses. But these methods are unsuitable for AAV-delivered gene therapies, as they would eliminate the vehicle needed to deliver the therapeutic to the target tissue.

As such, gene therapy drug makers are resorting to other approaches, such as virus filters comprising polymeric membrane barriers that separate out desirable AAVs from undesirable viruses by size. While virus filters are applied downstream in classical biologics production, upstream application is considered redundant. But with heightened regulatory focus on gene therapy safety, more developers are including viral filters upstream and downstream, as part of a comprehensive virus control strategy.

The selection of a virus filter with optimal throughput capacity and performance relies on several factors, including viral load, protein concentration, foulants, process interruptions, pressure, operating flux and ionic strength. This complex interplay of factors is being incorporated by manufacturers of filtration and separation products to better meet current and anticipated regulatory requirements faced by gene therapy developers.

As AAV delivered gene therapies are being developed to treat common diseases, regulators and drug developers alike are learning together how best to ensure patient safety throughout the entire gene therapy lifecycle, an approach firmly mirrored by manufacturing vendors.

About the author

Dr Clive Glover, PhD, is the director of strategy at Pall Corporation and leads Pall’s cell and gene therapy business. Previously he was responsible for driving product development efforts around cell therapy at GE Healthcare and has also held positions in marketing and product management at STEMCELL Technologies. Clive holds a PhD in Genetics from the University of British Columbia.

References

1.       US National Institutes of Health. Genetic and Rare Diseases Information Center (GARD). X-linked myotubular myopathy. https://rarediseases.info.nih.gov/diseases/11925/x-linked-myotubular-myopathy (accessed January 2021).

2.       Editorial. High-dose AAV gene therapy deaths. Nat Biotechnol. 2020; 38: 910. doi:10.1038/s41587-020-0642-9.

3.       Morales L, Gambhir Y, Bennett J, Stedman HH. Broader implications of progressive liver dysfunction and lethal sepsis in two boys following systemic high-dose AAV. Mol Ther. 2020; 28: 1753–1755. doi: 10.1016/j.ymthe.2020.07.009.

4.       Duan D. Systemic AAV micro-dystrophin gene therapy for Duchenne muscular dystrophy. Mol Ther. 2018; 26: 2337–2356. doi: 10.1016/j.ymthe.2018.07.011.

5.       Buscara L, Gross DA, Daniele N. Of rAAV and men: From genetic neuromuscular disorder efficacy and toxicity preclinical studies to clinical trials and back. J Pers Med. 2020 Nov 28;10(4):258–302. doi: 10.3390/jpm10040258.

6.       Rumachik NG, Malaker SA, Poweleit N, et al. Methods matter: Standard production platforms for recombinant AAV produce chemically and functionally distinct vectors. Mol Ther Methods Clin Dev. 2020; 18: 98–118. doi: 10.1016/j.omtm.2020.05.018.

">

想要这个行业洞察力的免费PDF版本吗?

填写下面的表格,我们将向您发送PDF版本的电子邮件“符合对基因治疗安全标准的重新调节的重点”

名*
姓*
电子邮件地址*
国家*
公司类型*
工作职能*
您想从技术网络接收进一步的电子邮件通信吗?捷克葡萄牙直播

捷克葡萄牙直播技术网络有限公司需要您提供给我们的联系信息,以与您联系我们的产品和服务。您可以随时退订这些通信。有关如何取消订阅以及我们的隐私惯例和保护隐私的承诺的信息,请查看我们隐私政策

无论是在治疗范围内还是在更大的医疗保健范围内如何管理它们,基因疗法代表了一种新的新范式,这并不是新闻。这对包括法规在内的几个关键领域产生了广泛的影响。在基因疗法调节框架方面,尽管2020年带来了一个混杂的书包 - 六个指导已完成,并引入了新的指导草案,但一些备受瞩目的拒绝使该行业震撼了。例如,食品药品监督管理局(FDA)延迟biomarin,是因为没有足够强大的临床试验数据和患者死亡的理由Audentes的Asvero临床试验

这些拒绝以及布里斯托尔·迈尔斯(Bristol Myers Squibb)和蓝鸟生物被拒绝拒绝其最新提交的内容,这表明基因治疗行业的监管负担将呈指数增长,而安全将受到更大的监管审查。

安全性,有效性和制造业之间的平衡行为


尽管安全性和功效始终处于药物开发的最前沿,但建立有效且可扩展的制造过程也很重要。尽管这种后勤考虑因素最初可能被认为是毒品安全性和功效的继发性,但这些因素是相互联系的。以Assovo审判中出现的问题为例。这个
I/II期试验 旨在评估腺相关病毒(AAV)提供的基因疗法的安全性和功效,AT132,在患者中 X连接的肌管肌病(XLMTM)。XLMTM是一种影响新生男孩的罕见神经肌肉疾病,通常是致命的 - 在生命的前18个月内死亡50%。突变肌管蛋白1((MTM1基因会导致进行性肌肉无力,肌肉张力降低和呼吸衰竭。修改疾病的治疗是不可用的,当前的护理构成症状管理。1

AT132经过设计以提供功能副本MTM1基因进入骨骼肌细胞以治疗XLMTM。尽管低剂量队列的阳性结果,但由于肝功能障碍和高剂量组中的败血症的参与者死亡而停止了试验。2-3 有证据表明高剂量AAV的潜在风险,也观察到高剂量的毒性 Avexis的Zolgensma,,,,Solid Biosciences的SGT-001辉瑞的PF-06939926 4,,,,5

定向进化或新型生产细胞系统是答案吗?


如何在原本强大的方式中解决这个致命的脚跟?一条途径是重新设计AAV,因此不再需要高剂量来确保足够的药物到达目标组织工作。定向进化可以改变AAV的血清型,使它们能够更紧密地靶向特定的人体组织,从而消除了对高剂量的需求。但是制造业的产量可能会急剧下降,据报道滴度比标准AAV低100倍。

现在正在为更常见的疾病开发基因疗法,包括
新冠肺炎 。考虑到这些治疗剂的这种应用,制造能力下降100倍,将转化为迫切需要它们的患者的药物延误。

另一个考虑因素是在重组AAV(RAAV)基因疗法生产中使用新型宿主细胞和矢量系统的趋势。尽管传统的瞬时转染方法产生了许多临床阶段基因治疗候选者,但这些过程的扩大尤其具有挑战性。例如,确保批处理一致性已被证明很难获得500升以上的收益率。因此,药物制造商正在探索其他方法,例如生物瘤采用的昆虫细胞和杆状病毒系统,以产生其血友病GT候选者。尽管它提供了极大的可伸缩性 - 很容易实现超过2000升的批量量,并且每批AAV量较高,但总体上提出了疑虑。AAV特性的差异可能在功能上具有功能和临床相关的差异,在不同系统产生的AAV之间,包括
翻译后修改 ,例如乙酰化,糖基化,磷酸化和甲基化。6此外,低水平的甲基化也发生在RAAV基因组上的不同位点。

过滤器:用于基因治疗病毒控制策略的优雅解决方案


AAVS的另一个linchpin要求是消除污染物,尤其是病毒载体的污染物。一个例子是产生AAV和不定的病毒来感染生产细胞的杆状病毒病毒,这两者都会损害患者并构成严重的安全漏洞。为了消除经典生物学产品(例如单克隆抗体和重组蛋白)的不良病毒,制造商采用了可去除或破坏病毒的强大下游方法。但是这些方法不适合通过AAV递送的基因疗法,因为它们会消除将治疗性传递到靶组织所需的车辆。

因此,基因治疗药物制造商正在采用其他方法,例如包括聚合物膜屏障的病毒过滤器,这些膜将所需的AAV与不良病毒分为大小。尽管在经典生物制剂生产中将病毒过滤器施加到下游,但上游应用被认为是冗余的。但是,随着对基因治疗安全的监管关注,更多的开发人员在上游和下游中包括病毒过滤器,这是全面的病毒控制策略的一部分。

选择具有最佳吞吐量和性能的病毒过滤器取决于多种因素,包括病毒载荷,蛋白质浓度,污垢,过程中断,压力,操作磁通和离子强度。过滤和分离产品的制造商正在纳入这种复杂的因素相互作用,以更好地满足基因治疗开发商面临的当前和预期的监管要求。

由于正在开发AAV递送的基因疗法来治疗常见疾病,因此监管机构和药物开发人员正在一起学习如何最好地确保整个基因疗法生命周期中的患者安全,这是一种由制造商牢固反映的方法。

关于作者

Clive Glover博士博士是PALL Corporation战略总监,负责Pall的细胞和基因治疗业务。此前,他负责推动GE Healthcare围绕细胞疗法的产品开发工作,并在Stemcell Technologies担任营销和产品管理职位。克莱夫(Clive)拥有不列颠哥伦比亚大学的遗传学博士学位。

参考

1。 美国国立卫生研究院。遗传和稀有疾病信息中心(GARD)。X连接的肌管肌病。https://rarediseases.info.nih.gov/diseases/11925/x-linked-myotubular-myopathy(2021年1月访问)。

2。 社论。大剂量AAV基因治疗死亡。NAT生物技术。2020;38:910。doi:10.1038/S41587-020-0642-9。

3。 Morales L,Gambhir Y,Bennett J,Stedman HH。在全身大剂量AAV之后,进行性肝功能障碍和致命性败血症的更广泛含义。摩尔。2020;28:1753–1755。doi:10.1016/j.ymthe.2020.07.009

4。 Duan D. Duchenne肌肉营养不良的全身性AAV微型障碍蛋白基因疗法。摩尔。2018;26:2337–2356。doi:10.1016/j.ymthe.2018.07.011

5。 Buscara L,Gross DA,Raav和Men的Daniele N.:从遗传神经肌肉疾病的功效和毒性临床前研究到临床试验和背部。J Pers Med。2020年11月28日; 10(4):258–302。doi:10.3390/jpm10040258

6。 Rumachik NG,Malaker SA,Poweleit N等。方法很重要:重组AAV的标准生产平台在化学和功能上不同。mol ther方法clin dev。2020;18:98–118。doi:10.1016/j.omtm.2020.05.018。

广告